Probing the interface in vapor-deposited bimetallic Pd-Au and Pt-Au films by CO adsorption from the liquid phase.
نویسندگان
چکیده
Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces whose properties were altered by variation of the Pd and Pt film thickness from 0.2 to 2 nm. Because no CO adsorption was observed on Au, the evaporation of Pt-group metals on Au allowed us to study the effect of dilution on the adsorption properties of the surfaces. At equivalent Pd film thickness, the evaporation of Au reduced the amount of adsorbed CO and caused the formation of 2-fold bridging CO, which was almost absent in monometallic surfaces. Additionally, the average particle size on Pd-Au surfaces was smaller than that on monometallic Pd surfaces. The results indicate that a Pd/Au diffuse interface is formed that affects the Pd particle size even more drastically than the simple decrease in Pd film thickness in monometallic surfaces. Pt-Au surfaces were less sensitive to CO adsorption, indicating that the two metals do not mix to a significant extent. The difference in the interfacial behavior of Pd and Pt in the bimetallic gold films is traced to the largely different Pd-Au and Pt-Au miscibility gaps.
منابع مشابه
Interaction of atomic hydrogen with monometallic Au(100), Cu(100), Pt(100) surfaces and surface of bimetallic Au@Cu(100), Au@Pt(100) overlayer systems: The role of magnetism
The spin-polarized calculations in generalized gradient approximation density–functional theory (GGA–DFT) have been used to show how the existence of second metals can modify the atomic hydrogen adsorption on Au (100), Cu (100), and Pt (100) surfaces. The computed adsorption energies for the atomic hydrogen adsorbed at the surface coverage of 0.125 ML (monolayer) for the monometallic Au (100), ...
متن کاملGreen Approach to Synthesis of Pt and Bimetallic Au@Pt Nanoparticles Using Carica Papaya Leaf Extract and Their Characterization
This study reports a green approach to synthesis of monometallic platinum nanoparticles (Pt NPs) and bimetallic aurium@platinum nanoparticles (Au@Pt) using aqueous leaf extract of Carica papaya as a reducing and stabilizing agent. The nature and morphology of as-synthesized PtNPs and bimetallic Au@Pt NPs were characterized using UV/vis spectroscopy (UV–vis), high resolution transmission electro...
متن کاملBimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates.
Nanobimetallic particles consisting of Au-Pd, Au-Ag, and Au-Pt have been synthesized in a single step by a sol-gel process and stabilized in liquid and solid matrices. Organically modified silicates (Ormosils) that play a dual role of a matrix and of a stabilizer have been used to obtain very stable dispersions in the form of sols, gels, and monoliths. The simultaneous reduction of metal ions l...
متن کاملGold Based Bimetallic Catalysts for Liquid Phase Applications
The liquid phase oxidation of D-Sorbitol has been carried out in water using oxygen as the oxidant in the presence of gold based catalyst. Au/C, Pt/C and Pd/C monometallic systems were compared to bimetallic Au/Pd and Au/Pt on carbon. A strong synergistic effect was observed producing a significant increase of reaction rate. Moreover, the addition of gold to Pd or Pt catalyst produced a system ...
متن کاملHydrogen Adsorption and Absorption with Pd−Au Bimetallic Surfaces
Pd−Au bimetallic catalysts have shown promising performance in numerous reactions that involve hydrogen. Fundamental studies of hydrogen interactions with Pd−Au surfaces could provide useful insights into the reaction mechanisms over Pd−Au catalysts, which may, in turn, guide future catalyst design. In this study, the interactions of hydrogen (i.e., adsorption, absorption, diffusion, and desorp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2007